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A b s t r a c t  

A mathematical model of a synthon is suggested. The synthon is modelled by a 
special so-called S-matrix. The notion of isomeric synthons on the set of atoms A 
and thaI of a Family of Isomeric Synthons FIS(A) is introduced. The chemical 
reaction is represented by a matrix equation and it is modelled by the so-called 
SR-matrix. The notion of the reaction distance (RD) between two isomeric 
synthons is defined. A mathematical theory of the S and SR-matrices is developed. 

O. I n t r o d u c t i o n  

The question of  the need for a unified mathematical model of  constitutional 

chemistry has already been discussed in the literature [1] .  Chemical synthesis is one 
o f  the fundamental  and most principal part of  experimental  chemistry; an endeavour 
to transfer this chemical "ar t"  to computers  gives rise to a new field of  theoretical 
chemistry - computer-assisted organic synthesis design. Two main trends have appeared 
in this field: (i) information-oriented programs, and (il) logical s tructure-oriented 
programs [1 ] .  

The logical s tructure-oriented programs are based on a mathematical  model 
of  chemistry.  Under the notion "mathematical  model"  we mean something other  
than a model built-up on the basis o f  quantum chemistry.  A formulat ion o f  such a 

model is useful for several reasons, the most consequential  one being that ,  at present, 
although the methods of  quantum chemistry offer a detailed view of  elementary 

chemical processes, its tools, due to the enormous computat ional  difficulties and 
a lack of  simple and straightforward interpretat ion of  numerical results, are still very 

limited in giving a chemically valuable answer whether  a studied reaction is feasible 
or not .  Therefore,  we believe that it is more important  to form such a model  which 

© J.C. Baltzer AG, Scientific Publishing Company 



74 J. Koma, A synthon approach: I 

can put "reasonable" questions to quantum chemistry concerning some elementary 
mechanistic steps of chemical synthesis rather than the general problem of finding 
the overall potential energy hypersurface. Hence, the problem of finding paths on 
the hypersurface can be reduced to the simpler problem of verification of a concrete 
path. Obviously, the most tried models in this field are Dugundji-Ugi's matrix 
model [1,2] andand Kvasni~ka's graph model [3,4],  respectively. 

The purpose of this communication is to form a deductive mathematical 
model in which the actions of a synthetic chemistry would be modelled. One of the 
most fundamental concepts in this topic is the synthon, initially introduced by 
Corey [5], as that smallest part of the substrate at which some changes occur during 
the chemical reaction of  interest. In out present theoretical consideration, the concept 
of the synthon will be understood in a rauch broader sense as a connected or a dis- 
connected molecular substructure [6] without a relationship to a particular chemical 
reaction. The most rudimentary forms of the synthon are the so-called one-atomic [7] 
and two-atomic [8] synthons. It is to be emphasized that the suggested model is 
entirely topological, i.e. stereochemical aspects of synthons and their appropriate 
manifestation during the chemical reaction are fully ignored. The above mentioned 
one-atomic synthons simply correspond to the valence stares of the atom [ 2 , 7 , 9 - 1 2 ] .  
If one uses only those valence states of atoms that are loosely classified as "chemically 
permissible", then the obtained model represents a primary part of realistic constitu- 
tional chemistry. 

1. An  algebraic  m o d e l  o f  the  s y n t h o n  

The model is based on an extended notion of  isomerism [1,13] by the study 
of the chemistry of a fixed set of atoms A. The chemical constitution of the synthon 
S(A) is determined by the localization of  the chemical bonds and free valence 
electrons on atoms from the set A. This concept has been derived from that of an 
ensemble of molecules EM(A ) used [1,2] for the set of empirical formulae of one or 
several molecules constructed from atoms of the set A. Against the definition of 
EM(A), S(A ) is extended so that it may involve free valences, i.e. bonds that do not 
connect two atoms but which only start from an atom. Such bonds are constructed 
as bonds between a particular real atom of the synthon and a free, so-called virtual 
atom, which is not specified. The concept of virtual atoms adds appreciably to the 
deductive power of the model, various concrete atoms or groups being conceived in 
place of a virtual atom in particular cases. 

DEFINITION 1 

Mathematically, a synthon is denoted by the so-called synthon BE-matrix 
(SBE, referred bellow as the S-matrix), M = (mq). Its oft-diagonal entries are defined 
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as the entries of the BE-matrix [1,2],  and the mii entry is the four-dimensional 
vector whose components identify the valence state of the a tom A i [2,7] as specified 
by the numbers of: unbonded valence electrons, sinne bonds, double bonds, and 
triple bonds, cf. example 1. It is clear that M is a symmetric square matrix of dimen- 
sion n (if A = {A~ . . . .  ,An} ). The headings of the rows and columns are labeled by 
the individual atoms from the set A. 

EXAMPLE 1 

The examples of synthons on the set A = {C,C,O,  C1}are, for example, 
structures 

Öl s 2(A):  - C = C = Ö + I C i -  SI (A) :  ........ ~~,_2 C//  i - - -  " 

i \ ~ ] 1  

The S-matrix M of the synthon S 1 (A) is the following: 

1C 2C O C1 

1C ( 0 , 4 , 0 , 0 )  1 0 0 

2C 1 (0 ,2 ,  1 ,0)  2 1 

0 0 2 (4,0,  1,0)  0 

C1 0 1 0 (6, 1,0,  0) 

Let the symbol ,:d i denote an ordered set of valence states of an atom with 
atomic number i: by the symbol 93 i we shall denote a set of so-called "stable" (i.e. 
chemically permissible) valence states of an atom with atomic number i. Hence, 
'Y~i C «'q i and ?J~6 is, for example, 

I I 
'~J~6 : {-C-~" C : ,  - C - ,  - C ~ ,  C, =C m, C=}. 

I I 

We say that the synthon S(A  ) is stable if each atorh A i E A with atomic number / has 
the valence state from the set ~~/. The synthons S 1 (A) and S 2 (A) from example 1 are 
stable. 

It is often conveniënt to consider only a part of the given synthon S ( A )  
(e.g. one-atomic reaction center); this will be called the subsynthon [6] if the foltow- 
ing conditions are satisfied: 
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DEFINITION 2 

Let S(A ) and S(X) be synthons on the set A and X, respectively, and let M 
and M'  be their S-matrices. We say that S(X) is a subsynthon of S(A) (denoted as 
S(X) C S(A ) ) i f  

(1) Xis  a subset of the set A. 

(2) M' is a submatrix of the matrix M. 

It is easy to see from the above definition that the property of "being a sub- 
synthon" preserves the valence states of all atoms with respect to the initial synthon. 
"lq~e synthon 

/ C - O  

is a subsynthon of the synthon S 1 (A) from example 1. whereas the synthon 

I 
C_ÖI e 

is not a subsynthon of the synthon S 1 (A). 

2. l s o m e r i s m  o f  s y n t h o n s  and  e l ec t ron ic  p rocesses  on s y n t h o n s  

The S-matrix is the static representation of  the synthon. If we study a change 
of the synthon S(A ) into S'(A ), then the isomerism of synthons is of basic note. We 
have taken over the general definition of isomerism [ 1,2,13],  which we have modified 
as follows. 

DI' I:IN1TION 3 

Let A and A'  be two sets of atoms. Let S(A) and S'(A) be a synthon on the 
set A and A'. respectively. We say that S(A) and S'(A) are isomeric i fA = A'. 

The definition of the isomerism is rauch looser in our model than in ref. [1] 
since it does not require conservation of  the total number of valence electrons, thereby 
enabling also nonstoichiometric processes to be modelled. 

2.1. TH E NOTION FIS(A ) 

The set of all isomeric synthons built on a set A will be referred to as a Family 
of lsomeric Synthons [6] and denoted FIS(A), in analogy with FIEM(A) built up 
as a set of  all isomeric [1,2] EM(A ). A formal study of  the topology of all synthons 



J. Ko~a. A synthon approach." I 77 

built on the set A is reduced to a study of  FIS(A ). A chemical reaction can be formally 
treated as an isomerization [2,13].  

EXAMPLE 2 

Let 

A = tC, O,O}, S , ( A )  -C=O_ -~ , &(A)" ' ö_=C=ö ~, 
\ Ö 2 

S3(A ) .  _ C = Ö  1 + ®1~2, S4(A ).  = C = ö l  + _ö2__ 

The following reactions are modelled by the following isomerizations: 

(a) S 1 (A) ~ S 2 (A) decarboxylation, 

(b) S 1 (A) -* S 3 (A), for e xample esterification, 

(c) Sc(A ) -~  S 1 (A) addition to C = C bond of ketene. 

It is easy to see from example 2 thät the number of valence electrons need 
not be conserved. For example, it is seen that during reaction (a), electrons are 
"consumed", and during reactions (b) and (c), electrons are "disengaged" 

2.2. A CHEMICAL REACTION AS A SER1ES OF ELEMENTARY ELECTRONIC 
CHANGES ON THE SYNTHON 

The process of a change of  one synthon into another is described in our model 
by a special, so-called SR-matrix. 

DEFINITION 4 

Let S(A) and S'(A) be two isomeric synthons with S-matrices M and M', 
respectively. We say that the SR-matrix (Synthon Reaction Matrix) of the change 
S(A) -+ S'(A) is the matrix P defined as P = M ' - M .  This operation of subtraction 
consists of the subtraction of matrices for the oft-diagonal entries and the subtraction 
of vectors for the diagonal entries. 

The SR-matrix describes a total electronic process during the change 
S(A) -+ S'(A). It is an analogy of the R-matrix [1,2,14] or the R-graph [4]. It 
follows from the definition that the SR-matrix is symmetric (because M and M' are 
symmetric), its diagonal entries model the global electronic changes, and the oft- 
diagonal entry mi/models the change between the atoms i and j. 

EXAMPLE 3 

The SR-matrix of reaction (a) from example 2 is 
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c (0,0,2,0) 2 2 (0,2,1,0) 

P = 0 2 (4 ,0 ,1 ,0 )  0 - 2 

0 2 0 (4 ,0 ,1 ,0 )  1 

2 1 

(4 ,0 ,1 ,0 )  0 

0 (4 ,2 ,0 ,0 )  

(0, - 2 ,1 ,0 )  0 1 

0 ~0,0,0,0) 0 

1 0 (0, - 2 , 1 , 0 ) .  

It is easy to see from the definition of the SR-matrix that a chemical reaction 
is expressed in the model by matrix ëquation (1) 

M ' : M + P ,  (1) 

where M and M'  are the S-matrices of the educt and the product, respectively, and 
P is the SR-matrix. 

The total electronic process represented by the change S(A)  -~ S'(A) is a set 
composed of the elementary steps of valence electrons reorganization (ESRE) [9,10]. 
The idea is based on the treatment of the elementary processes of reorganization of 
electrons [7,9,10] and the definition of the elementary electronic processes in the 
ASSOR program [15]. Four types of elementary matrix operators for modelling the 
elementary electronic processes [6] are introduced. 

ij for the electrofugal (from the viewpoint of the ith atom) (1) Operator ak 
dissociation of the bond between the i th and j th  atoms, and operator 
- akiJ for association of the same pair of atoms: k denotes the multiplicity 
of the bond. 

(2) Operator ~ff for the nucleofugal (from the viewpoint of the /th atom) 
dissociation of the bond between the ith and / th  atoms, and operator 

, = ~{/ -~ff for association of the same pair of atoms. It is clear that ak 
(i 4= j).  

(3) Operator ~,~J for the homolysis of the bond between the ith and ]'th 
atoms, and -7~ j for association of the radicals. 

(4) Operator ~ilJ and -filJ for redox processes associated with the oxidation 
and reduction, respectively, of the /th atom (l = 1 or 2 according to the 
number of involved electrons). 

i i  i i  R i i  i i  i i  i i  i i  _ i i  Operators o~k,--o~k,~,k,--f]k, 7k , - -~ 'k ,  8~, 8 t refer to situations where 
a virtual atom is involved instead of the ] th  atom. 
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T h e  a p p l i c a t i o n  o f  t h e  e l e m e n t a r y  o p e r a t o r s  is  r e a l i z e d  b y  m a k i n g  u s e  o f  

e q .  ( 1 ) .  F o r m a l l y ,  t h e  e l e m e n t a r y  o p e r a t o r s  a r e  t h e  S R - m a t r i c e s .  T h e  c o n c r e t e  f o r m s  

o f  t h e  o p e r a t o r s  a r e  g i v e n  i n  t a b l e  1.  

Tab le  1 

Ma t r ix  f o rm  o f  e l e m e n t a r y  o p e r a t o r s .  All e l e m e n t s  t h a t  a re  n o t  g iven  expl ic i t ly  

a~e z e ~ o e s ,  ~~ -- ~~ 

O p e r a t o r  k = 1 k = 2 

i i i / 

i . .  ( 2 , - 1 , 0 , 0 )  . .  - 1  i . .  ( 2 , 1 , - 1 , 0 )  . .  - 1  

] . . . . .  1 . .  ( 0 , - 1 , 0 , 0 )  ] . . . .  - 1  . . . .  ( 0 , 1 , - 1 , 0 )  

k = 3 P roce s s  to  be  m o d e l l e d  

i ] k = l :  I - J ~ - [  + J  

k = 2 :  i = j - . : , - [ - j  

Œ~ i . .  ( 2 , 0 , 1 , - 1 )  . .  - 1  k = 3 :  i =_ j -.. -[ ~ J 

] . . . .  - 1  . .  ( 0 , 0 , 1 , - 1 )  

k = l  k = 2  

i i 
ii 

c~ k 
i . .  ( 2 , - 1 , 0 , 0 )  . . . .  i . .  ( 2 , 1 , - 1 , 0 )  . . . .  

k = 3 P roces s  to be  m o d e l l e d  

i k = l :  I - - ~ I  " 
ii k = 2 :  I = - + I -  

a k 
i . .  ( 2 , 0 , 1 , - 1 )  . . . .  k = 3 :  I = ~ I  - =  

k = l  k = 2  

i i 

ii Ok 
i . .  ( 0 , - - 1 , 0 , 0 )  . . . .  i . .  ( 0 , 1 , - 1 , 0 )  

k = 3 P roce s s  to be  m o d e l l e d  

i k = l : I - ~ I  
ii k = 2 :  I = ~ l -  

#k 
i . .  ( 0 , 0 , 1 , - 1 )  k = 3 :  I-----~I= 
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T a b l e  1 ( c o n t i n u e d  

O p e r a t o r  k = 1 k = 2 

i / 

i . .  ( 1 , - 1 , 0 , 0 )  . .  - 1  

/ . . . .  ' - 1  . .  ( 1 , - 1 , 0 , 0 )  

i j 

i . ( 1 , 1 , - 1 , 0 )  . .  - 1 

j . . . .  - 1 . . . .  (1 ,  1, - 1 , 0 )  

k = 3 P r o c e s s  to  be  m o d e l l e d  

i j 

i . .  ( 1 , 0 , 1 , - 1 )  . - 1  

j . . . . .  - 1  . .  ( 1 , 0 , 1 , - 1 )  

k = l :  I - J + I  +J 
k = 2 :  I = J - , I ' - J "  

• • 

k = 3 :  I ~ J - * I  =J  

k = l  k = 2  

i i 

ii Vk 
i . .  ( 1 , - 1 , 0 , 0 )  . . . .  i . .  ( 1 , ! , - 1 , 0 )  . . . .  

k = 3 P r o c e s s  to  b e  m o d e t l e d  

i k = 1: I -  4 1 "  

ii k = 2 :  I = - - * I "  
Vk 

k = 3 :  I-=--+I'= 
i . .  ( 1 , 0 , 1 , - 1 )  . . . .  

t = l  t = 2  

, õ[J 

i j i j 

i . .  ( - 1 , 0 , 0 , 0 )  . .  0 i . .  ( - 2 , 0 , 0 , 0 )  . .  0 

j . . . .  0 . .  ( 1 , 0 , 0 , 0 )  j . . . .  0 . .  ( 2 , 0 , 0 , 0 )  

P r o c e s s  to  b e  m o d e l l e d  I "  + J ~ I + J "  [ + J --, I + J 

1 = 1  1 = 2  

i i 

ii 
öl 

i . .  ( - 1 , 0 , 0 , 0 )  . .  i . .  ( - 2 , 0 , 0 , 0 )  . .  

P r o c e s s  t o  b e  m o d e l l e d  I "  ~ I )- ~ I 
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2.3. PROPERT1ES OF S-MATRICES AND SR-MATRICES 

We show some propert ies of  S-matrices similar to those of  BE-matrices 
previously given in [1] .  

DEFINITION 5 

Let B ( n )  be the set o f  all n x n symmetr ic  matrices with nonnegative integer 

oft-diagonal entries. Let each diagonal entry be a four-dimensional  vector with non- 

negative integer entries. Let S [ B ( n ) ]  be the additive Abelian group of  all n x n 

symmetr ic  matrices with integer off-diagonal entries. Let each diagonal entry be a 
four-dimensional  vector with integer entries. 

DEFINITION 6 

Let Qrs(1 ~ < r < s ~ < n )  denote an n x n  symmetr ic  matr ix  Qrs =(q tp )  
whose diagonal entries are four-dimensional  vectors ( 0 , 0 , 0 , 0 ) .  Suppose also that 

each oft-diagonal entry of  Qrs is zero except  qrs = qsr = 1. Let Sq (1 ~< i <~ n, 
1 ~< / ~< 3) denote  an n x n symmetr ic  matr ix  Sq = (slp) with zero oft-diagonal 
entries, whose diagonal entry Sii is a four-dimensional  vector given as follows: 

s u = ( 0 , 0 , 0 , 0 )  for i ~ l and sii = ( Y l , ' ' "  "Y4)" where y]+: = 1 and Yk = 0 for 
k 4= / + 1. Let Lii = (llp) be a matr ix  of  the same type as matrices Q and S, with all 
zero entries except  lii = ( 1 , 0 , 0 , 0 ) .  

The following theorem may be easily proved. 

THEOREM 1 

(a) The matrices Qrs, Sq, Lii  form the basis o f  the group S [ B ( n ) ] ,  

(b) The group S [B(n) ]  is a free Abelian group* of  rank n ( n  + 7)/2. 

DEFINITION 7 

Let A = {A l . . . . .  A n } be a set o f  a toms.  Let S ( A )  be the synthon and 
M = (mi j )  its S-matr ix .  The following symmetr ic  n x n matrices are defined: 

A finitely generated additive free Abelian group B is an Abelian group with a basis b 1 . . . . .  bn, 
i.e. each element of B can be written in one, and only one, way as the linear combination 
x 1 o: + . . .  + x n b n, where each x i is integer. The number n is called the rank of B. Two free 
Abelian groups are isomorphic iff they have the same tank [ 1 ]. 
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(a) M E = ( r u f ) :  tn~~ = 0 for each 1 ~< i, ] ~< n, i 4= ] ;  
if we denote m E = (v l  . . . . .  v4), mii = (x  1 . . . .  , x4 ) ,  then we define 

tl 

Yl = O, yl =x t  - ~ .  G t (mik )  for 
R = I  

k ¢ i  

and 

{1 for x = l - 1 ,  

Gl (x )  = 0 pro x 4 = l - 1  

2 ~ < l ~ < 4  

(b) M N = (m~r) ' m  N = 0 f o r e a c h l  ~ < i , j < n ,  i C j :  

if we denote m.~ = ()'1 . . . . .  5'4), mii = ( X I , ' ' ' ,  X4) ,  then we define 
)'t = 0, Yl = xl f o r 2  ~ l~< 4. 

(c) M g = M - M E - M N. 

The respective structures SE(A), SN (A ) and S I  (A ) associated with M E, M N 

and M I are called the outside, N and inside components  o f  the synthon S ( A ) .  

THEOREM 2 

(a) Let B E ( n )  denote the set o f  all n x n symmetric matrices with 

zero off-diagonal entries and diagonal entries as four-dimensional integer vectors 
X 1 = ( X [ , .  i i = 0 and i i i >/O, for 1 ~< i ~< n. Let CE(n) • x 4), where x I x 2 , x  3 , x  4 
be an additive Abelian group of  all n x n symmetric matrices with zero off-diagonal 

entries and with four-dimensional integer vectors in the main diagonal such that the 
first entry o f  each vector is 0. 

(b) Let B N ( n )  denote the set o f  all n x n symmetric matrices with zero 
off-diagonal entries and diagonal x i = (x  i . . , x ~ ) , w h e r e  x i >f 0 and i i ~ = 0, 1 ' "  • • 1 X 2 ,  X 3 , X 4  

for 1 ~< i ~ n. Let C N (17) be an additive Abelian group o f  all n x n symmetric  matrices 

with zero off-diagonal entries and with four-dimensional integer vectors in the main 
diagonal such that the first entry of  each vector is an integer and the others are zero. 

(c) Let B : ( n )  denote the set of  all n x n symmetric matrices with nonnegative 
integer off-diagonal entries and diagonal entries as four-dimensional integer vectors 

= i i = 0  and i x i i >lO, for 1 ~ < i ~ n .  Let CZ(n) be x i ( x ~ , . . , x 4 ) , w h e r e  x 1 x2, 3, x4 
an additive Abelian group of  all n x n symmetric matrices with integer off-diagonal 
entries and with four-dimensional integer vectors in the main diagonal where the 
first entry of  each vector is zero. Then: 
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(i) C Æ (n) is a free Abelian group of rank 3 n with basis Sq, 

(ii) C N (n) is a free Abelian group of rank n with basis L i i ,  

(iii) CI(n)  is a free Abelian group of tank n (n + 5)/2 with basis Qrs, Sq. 

The proof of theorem 2 is analogous to that of theorem 1 and we omit it hefe. 

EXAMPLE 4 

//Öl 
Let A {1C, 2C, O, N}, the synthon S(A)  l~ 2 

I J"-N = 

We can express the S-matrix M of the synthon S(A), and matrices M i, M E , 
M N as follows: 

M = 

IC (0 ,4 ,0 ,0)  1 0 0 

2C 1 (0 ,2 ,1 ,0)  2 1 = QI2 + 2Qz3 + Q24 4- 4L33 

0 0 2 (4 ,0 ,1 ,0)  0 + 2L44 + 4 S  n +2S21 +$22 

N 0 1 0 (2 ,1 ,1 ,0)  + 832 + $41 + $42 

M I = 

1C (0,  1 , 0 , 0 )  1 0 0 

2C 1 (0 ,2 ,1 ,0)  2 1 

o o 2 (o,o, 1,o) o 

N 0 1 0 (0 ,1 ,0 ,0)  

= Q12 + 2 Q z 3  +024 +SII 
+ 2S21 + $22 + Sä2 + $41 

M E = 

'c (0,3,0,0) o o o 

2C 0 (0 ,0 ,0 ,0)  0 0 

o o o (o,o,o,o) o 

N 0 0 0 (0,0, 1,0) 

3Sll + $42 

M N = 

lc (o,o,o,o) o 0 o 

2C 0 (0 ,0 ,0 ,0)  0 0 

0 0 0 (4,0,0,0) 0 

N 0 0 0 (2 ,0 ,0 ,0)  

4L33 + 2L44 . 
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DEF'INIT1ON 8 

Let ~~s = Q r s .  Let Wik (1 ~< i ~< n, 1 -K< k -K< 3) denote an n x n symmetric 
matrix with zero oft-diagonal entries. Suppose also that each diagonal entry x/k of  
Wik is a four-dimensional integer vector x ik = ( x i k , . . .  , xJ4k), where x/k = ( 0 , 0 , 0 , 0 )  
for / 4: i, 1 ~< / -K< n, x il = (0, - 1 , 0 , 0 ) ,  x i2 = (0, 1, - 1 , 0 )  and X i3 = ( 0 , 0 ,  1, --1).  

THEOREM 3 

The matrices Vrs , l¢ik , Li i  form the basis of the free Abelian group C(n) .  

P r o o f  

It is easy to see that matrices Vrs , W/a , Li i  are linearly independent.  Their 
number is n (n  + 7)/2. Then from this and theorem 1, the conclusion of  theorem 3 
follows. 

THEOREM 4 

The matrices ~s and ~~'k, Wik, form the basis of the free Abelian group d ( n )  
and CE(n),  respectively. 

P r o o f  

The number of  matrices Vrs and 14].k, ~ 'k,  is n (n  + 5)/2, 3n,  respectively. 
Then from this and theorem 2, theorem 4 follows. 

COROLLARY 

Since the SR-matrices of the elementary operators c~,/L 7, 6 are from C(n), 
they must be linear combinations of the matrices Vrs, Wik , Li i .  The  expression of the 
linear combinations is shown in table 2. 

Table 2 
The cxpression SR-matrices of elementary operators by basis matrices 

P rs ~ Wik, L ii 

Operator Linear combination 

q _ ~ji 
C~k - ~k Vij + Wik + WJ k + 2"Lii 

ii 
e~ k Wik + 2. Lii 

ii Wi k ~k 

ii Wil¢ + Li  i vk 

611 - I .Li ,  + I.L//  

ii - l. Lii 61 
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TH EOR EM 5 

Ler A = {A l . . . . .  A n } be a set of  atoms. Let S(A )and S ' (A)  be two isomeric 
synthons with S-matrices M and M' ,  respectively. Let P = M '  - M. Then P is a sum of  
the elementary operators a u, Œ". [3 ii, 7 ij ,[ii, 6 ij 6 ii 

P r o  o f  

Let us consider the equality between the first and the second column of  

table 2. We obtain a system of  seven equations with live unknowns. This system has 
a solution on the condition that 7ff = a~ j + 8[ j, which is always satisfied (cf. table 2). 

Solving this system, we obtain, for example,  

ii ii 
L i i  = oq - 71 • 

"" ii 27~j, ~ j  = a/1 ] + 0~~ j -- O/1 

= ii + 2"7ff 
Wi k Ol k 

We can express P as a linear combination of  the matrices Vq, Wik, Lii. This proves 

theorem 5. 

It is clear that the set of  all S-matrices of  all synthons S ( A )  E H S ( A )  on the 
set of  atoms A = {A 1 , . . .  ,A n } is a subset of  the set C(n).  Analogically, the set of  

all SR-matrices of  changes S ( A )  --* S'(A ) is a subset of  the set C(n )  too. So, we can 

express each SR-matr ix as a unique linear combination of  the matrices [}j, Wik, Lii 
and, therefore,  as a linear combination of  the SR-matrices of  the elementary operators 

E X A M P L E  5 

Ler us consider the reaction S ( A )  --* S'(A ), where 

I 
S ( A )  is -1C--Brl2 and S' (A)  is - C -  + I~i . 

I I 

Ler M, M'  be the S-matrices o f  the synthons S ( A )  and S'(A) ,  respectively. Then 

P = M - M '  is the SR-matr ix of  the change S ( A )  -* S ' (A ): P can then be expressed, 

for example,  as follows: 

(a) P =/312 - /3~  1 - -122; 
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Or, in chemical symbols: 

I _ _  I _~ 
(a) - C - B r l - +  - ( ' ® +  IBrl ®-+ - C  + I ß y -  

I - -  I I 

I . . . . . .  / I 
(b) - -C-Br l  -~ ..... v l®+ IP, r ® ~ - C  .... + I B ~ -  

I - -  I - -  I 

I _ _ _  I I 
(c) --C-B_rl -+ - C "  + IBr" -+ .... C -  + IBr-  . 

I I - I 

It is clear thal each expression of  an SR-matr ix by SR-matrices of  the 
elementary operators c~,/3, % 6 has a different chemical meaning. In case (a), it is 

nucleophilic substitution, in case (b) an electrophilic substitution, and in case (c) a 

radical substitution. 

2.4. REACTION I)ISTANCE 

In the Dugundji--Ugi model,  the notion of  chemical distance (CD)has been 

introduced as the sum of  absolute values of  entries of  the R-matr ix  [1 ,16] .  Hence, 
the chemical distance reflects the total number  of  valence electrons that "migrate" 

during the reaction, and to some extent  it rather expresses the thermodynamic  point 
of  view of  the process under study. Out model is based mainly on kinetic aspects of  

the process, and so we define the new notion called the reaction distance (RD) of  
of  two isomeric synthons.  The starting formal structure for the definition of  RD is 

the graph @'ZS(A) defined as follows. 

DEVINIT1ON 9 

Let A = {A 1 . . . . .  A n } be a set of  atoms, We define a graph GFIS(A) as the 
ordered couple 

GFIS(A) = ( V, E), 

where 

V = { S ~ ( A ) , . .  ,Sm(A ) [Si(A) E FIS(A)}, 

E = { { x, y},  x, y C V, and if M and M '  are the S-matrices of  the synthon 

x and y ,  respectively, then o = M'  - M is from the set 0 }, 

o = I«L««," ~'~',~'L~L~/,',s[~,5;il l<.~<.n,  ~<j«.~,  
1 ~ k ~ < 3 ,  1 ~ < l ~ < 2  

is the set o f  elementary operators.  

Assuming that the above defined graph is connected,  then we may proceed 

to the definition o f  the so-called reaction distance (RD). 
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DEFINITION 10 

Let A = {A 1 . . . . .  A n } be a set of atoms. Let S(A) and S'(A) be two isomeric 
synthons. We define a reaction distance RD(S(A ), S'(A)) between S(A) and S'(A) as 
follows: 

RD(S(A ), S'(A )) = D(x, y), 

where x and y are the vertices of the graph GFIS(A), corresponding to the synthon 
S(A) and S'(A), respectively, and D(x, y) is the length of the shortest path between 
vertices x and y (the so-called graph distance between vertices x and y'). 

Because D(x, y) is a metric [17] on GFIS(A), RD is a metric on FIS(A ). 

A part of the graph GFIS(A) for A = {C,O,O} is shown in fig. 1. 

ù.® _e 
«C-O\-O- E 

\ ' - ' /  C "=m+ ~ H c "~"ö - - ~  - ~ -  

Q-c-Q L 

Fig. 1. A section of the graph GFIS(A) for A = {C,O,O}. 

Much important chemical information can be obtained from the graph GFIS(A) , 
for example, precursors/successors, reaction mechanisms, and reaction networks. 
For illustration, we obtain from the graph in fig. 1 that, for the carboxy group, the 
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successors/precursors can be carbon dioxide and functional derivatives of carboxylic 
acids. 

The reaction distance of two isomeric synthons is the smallest number of 
ESRE. For example, the R D  of the synthons A and F is three and the possible path 
is~1 ~ G - + H - * F .  

It is easy to see tlaat the graph GFZS(A) is very large (for example, the very 
rough lower estimate of the number of vertices in the graph GFIS(A) for A = {C. O, O} 
is 23 660), but subgraphs of the graph GFZS(A) are manageable for practical applica- 
tions. In the same way, the calculation of R D  is a complicated problem for more than 
two-atomic synthons (for one- and two-atomic synthons, the tast algorithm has been 
found [8]). Therefore, the graph model of the synthon has been given in [18] and 
the algorithm of the calculation of R D  has been implemented [19]. The algorithm is 
based on the algebraic approach to the generation of the minimal SR-graphs [18], 
with an employment of the maxinlal COlmnon subgraph [20] of two isomeric SR- 
graphs. 

The concept of the reaction distance and the concept of the chemical distance 
are not identical. The reaction distance is associated with ESRE and reflects mainly 
the kinetic aspecl of the process. The difference between the two distances is illu- 
strated by example 6. 

I,XAMPLE 6 

Let us consider reaction (a) and partial reactions (b), (c), (d) and corresponding 
RD and CD: 

(a) .... C X + H Y -+ C Y + H - X  CD = 4 R D  = 4, 
I 

I _ I 
(b) - C  X + H Y -+ C ® + IX e + H - ]  Z CD = 4 R D =  1, 

I I 

I I I d-» ~® 
(c) C X + H Y -~ -('-Y'~---H + , CD = 8 R D  = 2, 

I I 

(d) ( '  X + ' H - +  C Y + H + CD = 6 R D  = 3. 
I I 

We can see that R D  describes quite satisfactorily the extent of rearrangement 
from the educts to the products, but CD oscillates, i,e. the products are from the 
viewpoint of CD nearer to educts than the transition states. 

The concept of reaction distance has been employed in a similar concept as 
the minimal number of unit reactions [21]. In our model, the definition of R D  is 
oriented to the elementary processes of the reorganizations of electrons and, therefore, 
it is more useful for a reaction mechanism study. 

The reaction mechanism can be understood as the time-ordered series of 
ESRE, i.e. the path in the graph GFIS(A). For example, there exist two paths from 
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A (e.g. carboxylic acid) to F (e.g. ester) in the graph in fig. 1. The first one, i.e. 
A ~ B ~ C ~ D -~ E ~ F, models a bimolecular mechanism of esterification, the 
second one, i.e. A ~ G -+ H -+ F,  models a mechanism of creation of ester through 
a monomolecular mechanism via the  acylium ion - C ~ O  and its interaction with 
alcohol. Formally, the paths from A to L represent mechanisms of decarboxylation 
of an acid. Since the reaction mechanism is determined as a path in the graph GFIS(A), 
the correspondence with graphs of reaction mechanisms G, which have been defined 
previously [22], and with the ANCOD strings [22] is possible. 
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