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Abstract

A mathematical model of a synthon is suggested. The synthon is modelled by a
special so-called S-matrix. The notion of isomeric synthons on the sct of atoms 4
and that of a Family of Isomeric Synthons FIS(A) is introduced. The chemical
reaction is represented by a matrix equation and it is modelled by the so-called
SR-matrix. The notion of the reaction distance (RD) between two isomeric
synthons is defined. A mathematical theory of the § and SR-matrices is developed.

0. Introduction

The question of the need for a unified mathematical model of constitutional
chemistry has already been discussed in the literature [1]. Chemical synthesis is one
of the fundamental and most principal part of experimental chemistry; an endeavour
to transfer this chemical “art” to computers gives rise to a new field of theoretical
chemistry — computer-assisted organic synthesis design. Two main trends have appeared
in this field: (i) information-oriented programs, and (ii) logical structure-oriented
programs [1].

The logical structure-oriented programs are based on a mathematical model
of chemistry. Under the notion “mathematical model” we mean something other
than a model built-up on the basis of quantum chemistry. A formulation of such a
model is useful for several reasons, the most consequential one being that, at present,
although the methods of quantum chemistry offer a detailed view of elementary
chemical processes, its tools, due to the enormous computational difficulties and
a lack of simple and straightforward interpretation of numerical results, are still very
limited in giving a chemically valuable answer whether a studied reaction is feasible
or not. Therefore, we believe that it is more important to form such a model which
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can put “reasonable” questions to quantum chemistry concerning some elementary
mechanistic steps of chemical synthesis rather than the general problem of finding
the overall potential energy hypersurface. Hence, the problem of finding paths on
the hypersurface can be reduced to the simpler problem of verification of a concrete
path. Obviously, the most tried models in this field are Dugundji—Ugi’s matrix
model [1,2] andand Kvasnicka’s graph model [3,4], respectively.

The purpose of this communication is to form a deductive mathematical
model in which the actions of a synthetic chemistry would be modelled. One of the
most fundamental concepts in this topic is the synthon, initially introduced by
Corey [5], as that smallest part of the substrate at which some changes occur during
the chemical reaction of interest. In our present theoretical consideration, the concept
of the synthon will be understood in a much broader sense as a connected or a dis-
connected moelecular substructure [6] without a relationship to a particular chemical
reaction. The most rudimentary forms of the synthon are the so-called one-atomic [7]
and two-atomic [8] synthons. It is to be emphasized that the suggested model is
entirely topological. i.e. stereochemical aspects of synthons and their appropriate
manifestation during the chemical reaction are fully ignored. The above mentioned
one-atomic synthons simply correspond to the valence states of the atom [2,7,9-12].
If one uses only those valence states of atoms that are loosely classified as “chemically
permissible”, then the obtained model represents a primary part of realistic constitu-
tional chemistry.

1. An algebraic model of the synthon

The model is based on an extended notion of isomerism [1,13] by the study
of the chemistry of a fixed set of atoms 4. The chemical constitution of the synthon
S(A) is determined by the localization of the chemical bonds and free valence
electrons on atoms from the set 4. This concept has been derived from that of an
ensemble of molecules EM(A ) used [1,2] for the set of empirical formulae of one or
several molecules constructed from atoms of the set 4. Against the definition of
EM(A), S(A4) is extended so that it may involve free valences, i.e. bonds that do not
connect two atoms but which only start from an atom. Such bonds are constructed
as bonds between a particular real atom of the synthon and a free, so-called virtual
atom, which is not specified. The concept of virtual atoms adds appreciably to the
deductive power of the model, various concrete atoms or groups being conceived in
place of a virtual atom in particular cases.

DEFINITION 1

Mathematically, a synthon is denoted by the so-called synthon BE-matrix
(SBE, referred bellow as the §-matrix), M = (mij). Its off-diagonal entries are defined
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as the entries of the BE-matrix [1,2], and the my; entry is the four-dimensional
vector whose components identify the valence state of the atom A; [2,7] as specified
by the numbers of: unbonded valence electrons, single bonds, double bonds, and
triple bonds. cf. example 1. It is clear that M is a symmetric square matrix of dimen-
sion n (if 4 =1{4,...., A, }). The headings of the rows and columns are labeled by
the individual atoms from the set 4.

EXAMPLE 1
The examples of synthons on the set 4 ={C,C, O, Cl}are, for example,
structures:
S (A4 Ol 5,(4) -C=C=0+|Cl-.
_IC - ZC// | - —

The S-matrix M of the synthon S, (4 ) is the following:

Ic 2 0 cl
IC (0.4.0,0) 1 0 0
C 1 (0,2,1,0) 2
0 0 2 (4,0,1,0) 0
cl 0 1 0 (6,1,0,0)

Let the symbol «, denote an ordered set of valence states of an atom with
atomic number i: by the symbol %3, we shall denote a set of so-called “stable” (i.e.
chemically permissible) valence states of an atom with atomic number i. Hence,
B, C A and By is. for example,

t

| _
g ={-C= €= —C—, C

Iil

* éa =C=3 _C-= }-

We say that the synthon S(4 ) is stable if each atom A4; € 4 with atomic number j has
the valence state from the set %j. The synthons S, (4 )and S,(4 ) from example 1 are
stable.

It is often convenient to consider only a part of the given synthon S(4)
(e.g. one-atomic reaction center); this will be called the subsynthon [6] if the follow-
ing conditions are satisfied:
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DETINITION 2

Let S(A4)and S(X ) be synthons on the set 4 and X, respectively, and let M
and M' be their S-matrices. We say that S(X) is a subsynthon of S(A4 ) (denoted as
S(X)yc S )if

(1) X is a subset of the set A,

(2) M'is a submatrix of the matrix M.

It is easy to see from the above definition that the property of “being a sub-
synthon" preserves the valence states of all atoms with respect to the initial synthon.
The synthon

>C=§

is a subsynthon of the synthon S, (A4 ) from example 1. whereas the synthon

is not a subsynthon of the synthon S, (4 ).

2. Isomerism of synthons and electronic processes on synthons

The S-matrix is the static representation of the synthon. If we study a change
of the synthon S(A4 ) into S'(A4 ). then the isomerism of synthons is of basic note. We
have taken over the general definition of isomerism [1,2,13], which we have modified
as follows.

DEFINITION 3

Let 4 and 4" be two sets of atoms. Let S(4)and S'(4) be a synthon on the
set A and A’ respectively. We say that §(A4)and S'(4 ) are isomericif 4 = 4"

The definition of the isomerism is much looser in our model than in ref. [1]
since it does not require conservation of the total number of valence electrons, thereby
enabling also nonstoichiometric processes to be modelled.

2.1. THE NOTION FIS(4)

The set of all isomeric synthons built on a set 4 will be referred to as a Family
of Isomeric Synthons [6] and denoted FIS(A ). in analogy with FIEM(A) built up
as a set of all isomeric [1,2] EM(A). A formal study of the topology of all synthons
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built on the set 4 isreduced toastudy of FIS(A4 ). A chemical reaction can be formally
treated as an isomerization [2,13].

EXAMPLE 2
Let

A ={C,0,0}, 8,(4): -C=0", §,(4):'0=C=02,
\62

S3(4): =C=8" + ©10%. §,(4): =C=0" + -0 .
The following reactions are modelled by the following isomerizations:

(@) S;(4)— S,(A4) decarboxylation,
(b) S;(4) = S5(A4), for example esterification,
(c) S4(A4) = S,(A) addition to C=C bond of ketene.

It is easy to see from example 2 that the number of valence electrons need
not be conserved. For example, it is seen that during reaction (a), electrons are
"consumed”, and during reactions (b) and (c), electrons are “disengaged”.

2.2, A CHEMICAL REACTION AS A SERIES OF ELEMENTARY ELECTRONIC
CHANGES ON THE SYNTHON

The process of a change of one synthon into another is described in our model
by a special, so-called SR-matrix.

DEFINITION 4

Let S(A) and S'(4) be two isomeric synthons with S-matrices M and M,
respectively. We say that the SR-matrix (Synthon Reaction Matrix) of the change
S(A) > S'(4) is the matrix P defined as P = M' — M. This operation of subtraction
consists of the subtraction of matrices for the off-diagonal entries and the subtraction
of vectors for the diagonal entries.

The SR-matrix describes a total electronic process during the change
S(A) - S§'(4). It is an analogy of the R-matrix [1,2,14] or the R-graph [4]. It
follows from the definition that the SR-matrix is symmetric (because M and M' are
symmetric), its diagonal entries model the global electronic changes, and the off-
diagonal entry m;; models the change between the atoms / and j.

EXAMPLE 3

The SR-matrix of reaction (a) from example 2 is
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C (0,0.2,0) 2 2 (0,2,1,0) 2 1
P=0 2 (4,0,1,0) o - 2 (4.0.1,0) O
0o 2 0 (4,0,1,0) 1 0  (4,2.0,0)
©,-2,1.00 0 1
= 0 0,0,0,00 0
1 0 (0, -2,1,0).

It is easy to see from the definition of the SR-matrix that a chemical reaction
is expressed in the model by matrix equation (1)

M =M+P, (1)

where M and M’ are the S-matrices of the educt and the product. respectively, and
Pis the SR-matrix.

The total electronic process represented by the change S(A4) = S'(A4) is a set
composed of the elementary steps of valence electrons reorganization (ESRE) [9,10].
The idea is based on the treatment of the elementary processes of reorganization of
electrons [7,9,10] and the definition of the elementary electronic processes in the
ASSOR program [15]. Four types of elementary matrix operators for modelling the
elementary electronic processes [6] are introduced.

(1) Operator @)/ for the electrofugal (from the viewpoint of the ith atom)
dissociation of the bond between the ith and jth atoms, and operator
-oz,';j for association of the same pair of atoms; & denotes the multiplicity
of the bond.

(2) Operator B,’Z for the nucleofugal (from the viewpoint of the ith atom)
dissociation of the bond between the ith and jth atoms, and operator
—ﬁ,’;" for association of the same pair of atoms. It is clear that a,’;f = B{f
(i 7).

(3) Operator 7,? for the homolysis of the bond between the ith and jth
atoms, and —v,/ for association of the radicals.

(4) Operator 5;7 and *5}7 for redox processes associated with the oxidation
and reduction, respectively, of the ith atom (/ =1 or 2 according to the
number of involved electrons).

Operators o, —a;{", ,‘;i, ——B,’c", 'y,ii, ~'y,£i, i —8) refer to situations where
a virtual atom is involved instead of the jth atom.
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The application of the elementary operators is realized by making use of
eq. (1). Formally, the elementary operators are the SR-matrices. The concrete forms
of the operators are given in table 1.

Table 1

Matrix form of elementary operators. All elements that are not given explicitly
are zeroes; a;c] = 6£

Operator k=1 k=2
i i i i
ol i..(2,-1,0,0) .. -1 i (2,1,-1,0) .. ~1
j.o... =1 ...(,-1,0,0 i.o... -1 ....(0,1,-1,0
k=3 Process to be modelled
i i k=1:T—-J~T+J
. : i k=2:1=J~1-J
af i..2,0,1,-1) .. -1 k=3:I=J~1=J
j.... =1 ...(0,0,1,-1)
k=1 k=2
i i
ol . .
k i (2,-1,0,0) .... i1,-1,0) ...
k=3 Process to be modelled
i k=1:T— =1
a;'ci : k=2:1=—17 -
i 2,0,1,~1) k=3 I=>1T=
k=1 k=2
i i
plt . .
k i..(0,-1,0,0) .... i..0,1,-1,0)
k=3 Process to be modelled
i k=1:T—-~-1
B;ci k=2:T= -]~

i..(0,0,1,-1) k=3:I=—]=
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Table 1 (continued)

Operator k=1 k=2
i i i J
v i . (1,-1,0,0) .. -1 io(1,1,-1,0) .. ~1
i =1 ..(1,-1,0,0 ji.o... =1 ....,1,-1,0)
k=3 Process to be modelled
i i k=1:71-J—-1+J"
if ) ' k=2.1=J—1 —J'
Y : : k=3 71=7—-1=J"
K P..(1,0,1,-1) .. ~1
Joo -1 ..(1,0,1,-1)
k=1 k=2
i i
ii : :
5 : :
i (1,-1,0,0) .... i, -1,0) ...
k=3 Process to be modelled
i k=1:7- =171
7’?’ . k=§:§=—>1:
: k=3:I=-]"=
i (1,0,1,-1) ....
1=1 1=2
i J i j
s i..(~1,0,0,0) .. 0 i..(=2,0,0,0) .. 0
J 0..(,0,0,0) j 0 ..@2,0,00
Process to be modelled 7" +J ~I1+J" I +7-1+7
=1 1=2
i i
5;"' . :
i..(-1,0,0,0) .. i.. (=2,0,0,0) ..
Process to be modelled I° I T-1
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2.3. PROPERTIES OFF S-MATRICES AND SR-MATRICES

We show some properties of S-matrices similar to those of BE-matrices
previously given in [1].

DEFINITION 5

Let B(n) be the set of all # x n symmetric matrices with nonnegative integer
off-diagonal entries. Let each diagonal entry be a four-dimensional vector with non-
negative integer entries. Let S[B(n)] be the additive Abelian group of all nxn
symmetric matrices with integer off-diagonal entries. Let each diagonal entry be a
four-dimensional vector with integer entries.

DEFINITION 6

Let Q,,(1 <r<s<n) denote an nxn symmetric matrix Q,, = (q,p)
whose diagonal entries are four-dimensional vectors (0,0,0,0). Suppose also that
each off-diagonal entry of Q,  is zero except q,, = q,, = 1. Let S; I<i<n,
1 << 3) denote an » xn symmetric matrix S = (s;,) with zero off-diagonal
entries, whose diagonal entry s; is a four-dimensional vector given as follows:
sy =(0,0,0,0) for i# [ and s;=(y,.....y,). where Yi+: =1 and y, =0 for
k#j+1. Let L;= (l,p) be a matrix of the same type as matrices Q and S, with all
zero entries except /;; = (1,0.0,0).

The following theorem may be easily proved.

THEOREM 1
(a) The matrices Q,, Sij Ly form the basis of the group S[B(n)].
(b) The group S[B(n)] is a free Abelian group® of rank n(n + 7)/2.

DEFINITION 7

Let 4 ={A4,,....4,} be a set of atoms. Let S(A) be the synthon and
M= (m,.j) its S-matrix. The following symmetric n X n matrices are defined:

*A finitely generated additive free Abelian group B is an Abelian group with a basis by, ..., by,
i.e. each element of B can be written in one, and only one, way as the linear combination
xy by + ... +tx, b, where each x; is integer. The number n is called the rank of B. Two free
Abelian groups are isomorphic iff they have the same rank [1].
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(a) ME"(mE) f-Oforeachl <LjsSni#];

if we denote m =V Vo). my=(x,.....x,), then we define

n
v =0,y =x,— 9 Gimy) for 2<1<4

k=1
k#1
and
1 for x=1-1,
Gz(x):

0 pro x#1-1

(b) MN"(m Yo ?{v Oforeachl < 1/< NN
if we denote g =Py, V) My = (x,,.,..x4), then we define
v =0,y =x for2<l<4.

() M =M-ME-MN.

The respective structures S£(4), SN (4) and S?(A) associated with MZ, MV
and M7 are called the outside, N and inside components of the synthon S(A4).

THEOREM 2

(a) Let Bf(n) denote the set of all mxn symmetric matrices with
zero off-diagonal entries and diagonal entries as four-dimensional integer vectors
x, = (xf, o xh), where x/ =0 and xi, x{, x! >0, for 1 <i<n. Let CE(n)
be an additive Abelian group of all n x n symmetric matrices with zero off-diagonal
entries and with four-dimensional integer vectors in the main diagonal such that the
first entry of each vector is 0.

(b) Let BN (n) denote the set of all n xn symmetric matrices with zero
off-diagonal entries and diagonal x* = (x!,..., x}), where x! > Oand x, x, x! =0,
for 1 < i< n. Let €™ (n) bean additive Abelian group of all # x n symmetric matrices
with zero off-diagonal entries and with four-dimensional integer vectors in the main
diagonal such that the first entry of each vector is an integer and the others are zero.

(c) Let BY(n) denote the set of all n x n symmetric matrices with nonnegative
mteger off-diagonal entries and dlagonal entries as four-dimensional integer vectors
xt=(x, ... xk), where x{ =0 and x£, x!, x{ >0, for 1 <i< n.Let C'(n)be
an addmve Abehan group of all n x n symmetric matrices with integer off-diagonal
entries and with four-dimensional integer vectors in the main diagonal where the
first entry of each vector is zero. Then:
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(i) CE(n)is a free Abelian group of rank 3» with basis Sy
(ii) CN(n)is a free Abelian group of rank n with basis L.
(iii) 7 (n) is a free Abelian group of rank n(n + 5)/2 with basis Qrsr Sij -

The proof of theorem 2 is analogous to that of theorem 1 and we omit it here.

EXAMPLE 4

|
Let 4 = {1C,2C. 0, N}. the synthon S(4): —I(IZ~2§ e

We can express the S-matrix M of the synthon S(4). and matrices M, ME,
MY as follows:

'C (0,4,0.0) 1 0 0
’C 1 (0,2,1.0) 2 = Q,120,,+0,, t4L
M="0 o 2 (40.1.0) 0 2L, 4S5, 425, +S,
N o0 1 0 (2,1,1,0) + 5, +S, +S,
'C (0.1,0,0) 1 0 0
MJ=2C 1 (0,2,1,0) 2 1 0L, 420, + 0, 48
0 0 2 0.0.1,0) 0 + 2;221 +5223+ 53224'1'541“
N 0 1 0 (0,1,0,0)

IC (0.3,0,0) 0

g °C 0 (0,0,0,0) 0 0

M= = = 38, tSa
0 0 0 (0.0,0,0) 0
N 0 0 0 (0,0,1,0)
'C  (0,0,0,0) 0 0
2C 0 0,0,0,0 0

MN = (0,0.0.0) = 4L +2Lg, .
0 0 0 (4,0,0,0) 0

N 0 0 0 (2,0,0,0)
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DLEFINITION 8

Let Vi =Q,s Let Wy (1 <i<n,1<k<3)denote an n xn symmetric
matrix with zero off-diagonal entries. Suppose also that each diagonal entry x’* of
W, is a four-dimensional integer vector x/* = (x{""', o ,x{;"), where.x’k =(0,0,0,0)
for j#i, 1 <j<n xt=(0,-1,0,0), x>=(0,1.-1,0) and x™ =(0,0,1. -1).

THEORFEM 3

The matrices V., W, L;; form the basis of the free Abelian group C(#n).
Proof

It is easy to see that matrices Vigr Wi L;; are linearly independent. Their
number is n(n +7)/2. Then from this and theorem I, the conclusion of theorem 3
follows.
THEOREM 4

‘The matrices V,; and W, W, form the basis of the free Abelian group Cl(n)
and CE(n), respectively .
Proof

The number of matrices Vg

Then from this and theorem 2. theorem 4 follows.

and W, W, is n(n +5)/2,3n, respectively.

COROLLARY

Since the SR-matrices of the elementary operators a, 8. v, § are from C(n).
they must be linear combinations of the matrices V.g» Wi, L;;. The expression of the
linear combinations is shown in table 2.

Table 2
The cxpression SR-matrices of elementary operators by basis matrices
Ve Wit Ly
Operator Lincar combination
i /i :
o =By Vit Wi * Wi ¥ 2Ly
it
e Wik +2.L,
i
ﬁk Wik
i
7% Vit Wi+ Wyt Lig+ Ly
ii
s W +Ly
i “1L.+LL,
5 LLy+l Ly

ii
5, -1LLy
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THEOREM S

Let 4 ={A4,,....4,} be a set of atoms. Let S(A4)and S'(4) be two isomeric
synthons with S-matrices M and M.'_, res.pect_i.vely‘. Let P = M' =M. Then Pis a sum of
the elementary operators o', o' ", v/, 4", 86", 6",

Proof

Let us consider the equality between the first and the sccond column of
table 2. We obtain a system of seven equations with five unknowns. This system has
a solution on the condition that 7” = a" + 6" which is always satisfied (cf. table 2).
Solving this system, we obtain, for exampl ,

o i i
Ly =ay — v,
= olf Ji— il — 9adf
Vi =of +af —ay =29,
T ii
Wi = g + 27

We can express P as a linear combination of the matrices Vij» Wi Lj;- This proves
theorem 5.

It is clear that the set of all S-matrices of all synthons S(4) € FIS(A) on the
set of atoms 4 ={A4,,..., .A,}is a subset of the set C(n). Analogically. the set of
all SR-matrices of changes S(A) - §'(A) is a subset of the set C(n) too. So, we can

express each SR-matrix as a unique linear combination of the matrices V,.,, Wi Lii

and, therefore, as a linear combination of the SR-matrices of the elementary operators
o, f,9.6.
EXAMPLE S

Let us consider the reaction S(A4) = S'(4). where
Lo | -
S(A) is -‘(;43_;12 and  S'(4) is —C- +1Br-.

Let M, M' be the S-matrices of the synthons S(A4) and S'(4), respectively. Then
P =M -M'is the SR-matrix of the change S(A4) = §'(A4): P can then be expressed.
for example, as follows:

(a) P=p* - B — af?;
(b)P=a} "0‘1 {3

(c) P=7% — ' — 42
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Or, in chemical symbols:

| | . | e

(a) -(‘T-Bgl - *C@+ |Brl® - ~C + Br-
| —

1°+ Br® - —C{“«- + |Br—

193!

(b) -

+Br' > —C— + |Br—.

Br| -
= l

{
-C—
|
(©) C:

C
|
l |
~-C’
[

It is clear that each expression of an SR-matrix by SR-matrices of the
elementary operators a. . v. 8 has a different chemical meaning. In case (a). it is
nucleophilic substitution, in case (b) an electrophilic substitution, and in case (c) a
radical substitution.

24. REACTION DISTANCL

In the Dugundji—Ugi model, the notion of chemical distance (CD) has been
introduced as the sum of absolute values of entries of the R-matrix {1,16]. Hence,
the chemical distance reflects the total number of valence electrons that “migrate”
during the reaction, and to some extent it rather expresses the thermodynamic point
of view of the process under study. Our model is based mainly on kinetic aspects of
the process. and so we define the new notion called the reaction distance (RD) of
of two isomeric synthons. The starting formal structure for the definition of RD is
the graph Gyg( 4y defined as follows.

DEFINITION 9

Let A ={A,..... A} be a set of atoms. We define a graph Gryg4) as the
ordered couple

Grisay = (V. E).

where
V =1{85(4),....5,(4)15(4) € FIS(A)}.
E=1{{x plx vy €V andif M and M'are the S-matrices of the synthon
x and y, respectively. then 0 = M' — M is from the set O},
0 ={al of BT, B v, w8/ 81} 1<i<n, i<j<n,

I1<k<3, 112

is the set of elementary operators.

Assuming that the above defined graph is connected, then we may proceed
to the definition of the so-called reaction distance (RD).



J. Koca. A synthon approach. | 87

DETINITION 10

Let 4 ={4,..... .A,} be a set of atoms. Let S(4)and S'(4) be two isomeric
synthons. We defme a reactlon distance RD(S(A4),S'(A4)) between S(A)and S'(A) as
follows:

RD(S(A4),S8'(A4)) = D(x,y),

where x and y are the vertices of the graph Gris(a)- corresponding to the synthon
S(A) and S'(A), respectively, and D(x, y) is the length of the shortest path between
vertices x and p (the so-called graph distance between vertices x and y).

Because D(x, y)is a metric [17] on GF,S(A), RD is a metric on FIS(A).

A part of the graph Gpyg(,4y for 4 = {C,0.0} is shown in fig. 1.

/C Dl*_D“ E
QO/ \ ~
C “C‘Q*"Q* F
c \/Cigi —@D" -0- H
rO’\Q’ - fé_ G
Q"\ C\/g_A/ |
) C’Q \ecf8—1

Fig. 1. A section of the graph GFIS(A) for A ={C,0,0}.

Much important chemical information can be obtained from the graph Gris(a)-
for example, precursors/successors, reaction mechanisms, and reaction networks.
For illustration, we obtain from the graph in fig. 1 that, for the carboxy group, the
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successors/precursors can be carbon dioxide and functional derivatives of carboxylic
acids.

The reaction distance of two isomeric synthons is the smallest number of
ESRE. For example. the RD of the synthons 4 and F is three and the possible path
isA—=G->H~=F.

It is easy to see that the graph Gpyg(4, I8 very large (for example, the very
rough lower estimate of the number of vertices in the graph Gpg(4) for 4 = {C.0,0!}
is 23660), but subgraphs of the graph Gpyg (4 are manageable for practical applica-
tions. In the same way, the calculation of RD is a complicated problem for more than
two-atomic synthons (for one- and two-atomic synthons. the fast algorithm has been
found [8]). Therefore, the graph model of the synthon has been given in [18] and
the algorithm of the calculation of RD has been implemented [19]. The algorithm is
based on the algebraic approach to the generation of the minimal SR-graphs [18],
with an employment of the maximal common subgraph [20] of two isomeric SR-
graphs.

The concept of the reaction distance and the concept of the chemical distance
are not identical. The reaction distance is associated with ESRE and reflects mainly
the kinetic aspect of the process. The difference between the two distances is illu-
strated by example 6.

FXAMPLE 6

Let us consider reaction (a) and partial reactions (b}, (¢). (d) and corresponding
RD and CD:
|

| o

(@ ~C-X+H Y > =Y +HX CD=4 RD=4,
| . | .V._

(b) ~C-X +H Y = - Ll“@ +I1X®+H-Y (D=4 RD=1,

v A N L ve O

() C-X+H-Y = —(-Y*H +X CD=8 RD-=2.
| | e

(@ C X +H-Y > €V +H +X° p=6 RD=3

We can see that RD describes quite satisfactorily the extent of rearrangement
from the educts to the products, but CD oscillates, i.e. the products are from the
viewpoint of CD nearer to educts than the transition states.

The concept of reaction distance has been employed in a similar concept as
the minimal number of unit reactions [21]. In our model, the definition of RD is
oriented to the elementary processes of the reorganizations of electrons and. therefore,
it is more useful for a reaction mechanism study.

The reaction mechanism can be understood as the time-ordered series of
ESRE, ie. the path in the graph Grs(a)- For example, there exist two paths from
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A (e.g. carboxylic acid) to F (e.g. ester) in the graph in fig. 1. The first one. i.e.
A—-+B—->C—-D-— E~- F, models 2 bimolecular mechanism of esterification, the
second one, ie. 4 > G~ H — F, models a mechamsm of creation of ester through
a monomolecular mechanism via the acylium ion —-C =0 and its interaction with
alcohol. Formally, the paths from A to L represent mechanisms of decarboxylation
of an acid. Since the reaction mechanism is determined as a path in the graph Ggg( 4.
the correspondence with graphs of reaction mechanisms G, which have been defined
previously [22],and with the ANCOD strings [22] is possible.

References

[1]  J. Dugundji and I. Ugi, Top. Curr. Chem. 39(1973)19.
(2] I Ugi, J. Bauer, J. Brandt, J. Friedrich, J. Gasteiger, C. Jochum and W. Schubert, Angew.
Chem. Int. Ed. Engl. 18(1979)111.
V. Kvasni¢ka, Coll. Czech. Chem. Commun. 48(1983)2097; 48(1983)2118;49(1984)1090.
V. Kvasnitka, M. Kratochvil and J. Ko&a, Coll. Czech. Chem. Commun. 48(1983)2284.
E.J. Corey, Pure and Appl. Chem. 14(1967)19.
J. Ko€a, Coll. Czech. Chem. Commun. 53(1988)1007.
J. KoCa, M. Kratochvﬂ, M. Kunz and V. Kvasni¢ka, Coll. Czech. Chem. Commun. 49(1984)
1247.
[8] J.Kola, M. Kratochvil, L. Matyska, V. Kvasni¢ka, Coll. Czech. Chem. Commun. 51(1986)
2637.
[9] M. Kratochvﬂ Chem. Listy 77(1983)225.
] M. Kratochvﬂ J. Ko&a and V. Kvasni¢ka, Chem. Listy 78(1984)1.
] A.Weise, Z. Chem. 17(1977)100.
[12] M. Kratochvil, J. Ko& and V. Kvasni€ka, Chem. Listy 79(1985)807.
]
]

o oy g
~3 N B
(RS M

Z. Slanina, Teoretieskije aspekty javienija izomerii v chimii (Mir. Moscow, 1984).
M. Kratochvil, Chem. Listy 75(1981)675.
[15] W. Schubert, MATCH 6(1979)213.
[16] C.Jochum, J. Gastieger, I. Ugi and J. Dugundji, Z. Naturforsch. 37b(1982)1205.
[17] Cf. 1. Bosak, Grafy a ich aplikdcie (Alfa, Bratislava, 1980).
{18] I.Koca, Coll. Czech. Chem.Commun. 53(1988)3108.
[19] J.Koda, Coll. Czech. Chem. Commun. 53(1988)3119
] V.BalaZ, J. Ko&a, V. Kvasni¢ka and M. Sekanina, Cas. p&st. mat. 111(1986)431.
[21] J.B. Hendrickson, Acc. Chem. Res. 19(1986)274.
] J.Koéa, M. Kratochvil and V. Kvasni¥ka, Coll. Czech. Chem. Commun. 50(1985)1433.



